Efectos del viento en el océano: oleaje

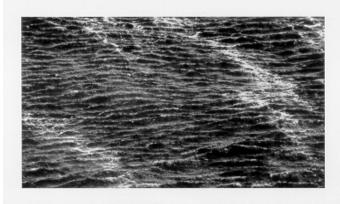
Los primeros efectos del viento son el crear oleaje de período corto, que crece hasta ondas más largas

El oleaje y su interacción con el viento transmite el esfuerzo del viento hacia el océano

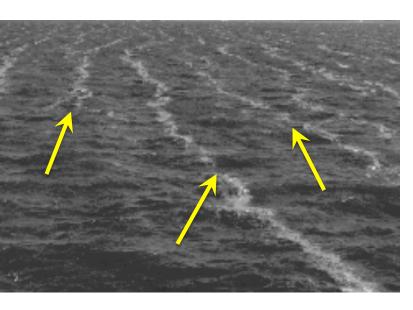
$$\tau = \rho_a C_d W^2 \quad \text{(N m}^{-2}\text{)}$$

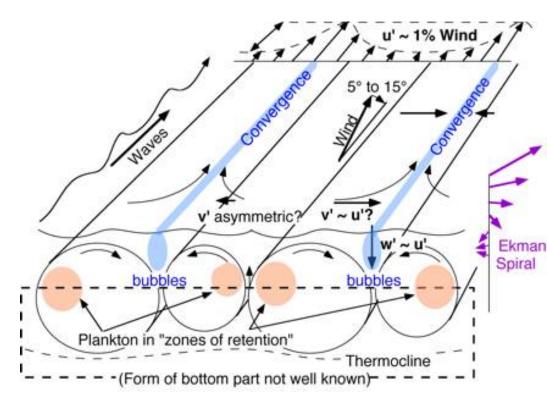
$$\rho_a \sim 1.3 \text{ kg m}^{-3}$$

$$C_d \sim 1 \rightarrow 3 \times 10^{-3}$$



Efectos del viento a pequeña escala: celdas de Langmuir





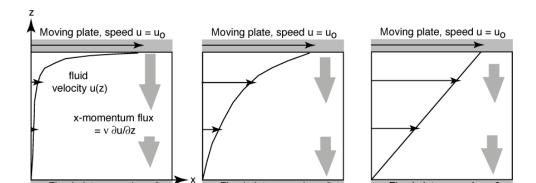
Escala horizontal: 10-50 m

Escala vertical: 4-6 m

Esfuerzo del viento

$$au =
ho_a \, C_d \, W^2$$
 (N m⁻²) Fuerza por unidad de área

- El esfuerzo del viento se transmite a la columna de agua a través de la viscosidad del fluido
- La viscosidad da lugar a la fricción que se opone al movimiento
- La viscosidad permite la mezcla turbulenta y la transferencia de la energía del viento hacia capas inferiores que no están expuestas al viento



Corrientes bajo un viento constante

- Cuando el océano está expuesto a un viento uniforme y constante, la capa superficial se mueve en la dirección del viento
- Si el viento continúa su acción, el agua se acelera e incrementa su velocidad
- La intensidad de la corriente llega a un límite
- Esto implica que la fuerza del viento sobre la superficie está siendo contrarrestada por otras fuerzas

Corrientes bajo un viento constante

 La fuerza del viento sobre la superficie está en balance con otras fuerzas

- > Fuerza de fricción
- > Fuerza de Coriolis

Corrientes bajo un viento constante

- La fuerza de fricción se opone al movimiento y se incrementa conforme la velocidad aumenta
- La fuerza de Coriolis actúa una vez que se inicia el movimiento

Esfuerzo del viento = Fricción + Coriolis

Bajo la influencia de un viento constante la capa superficial se mueve a velocidad constante en una dirección diferente a la del viento

Balance de fuerzas (con rotación)

```
 \begin{array}{lll} x\colon \; \partial u/\partial t + u\; \partial u/\partial x + v\; \partial u/\partial y + w\; \partial u/\partial z \text{- fv} = \\ \text{- } (1/\rho)\partial p/\partial x + \partial/\partial x (A_H\partial u/\partial x) + \\ \; \partial/\partial y (A_H\partial u/\partial y) + \partial/\partial z (A_V\partial u/\partial z) \end{array}
```

y:
$$\partial v/\partial t + u \, \partial v/\partial x + v \, \partial v/\partial y + w \, \partial v/\partial z + \mathbf{fu} = -(1/\rho)\partial p/\partial y + \partial/\partial x (A_H \partial v/\partial x) + \partial/\partial y (A_H \partial v/\partial y) + \partial/\partial z (A_V \partial v/\partial z)$$

z:
$$\partial w/\partial t + u \, \partial w/\partial x + v \, \partial w/\partial y + w \, \partial w/\partial z \, (+ Fc \approx 0) = -(1/\rho)\partial p/\partial z - g + \partial/\partial x (A_H \partial w/\partial x) + \partial/\partial y (A_H \partial w/\partial y) + \partial/\partial z (A_V \partial w/\partial z)$$

Balance de fuerzas (con rotación)

```
 \begin{array}{l} x\colon \ \partial u \!\!\!/ \partial t + u \ \partial u \!\!\!/ \partial x + v \ \partial u \!\!\!/ \partial y + w \ \partial u \!\!\!/ \partial z \text{- fv} = \\ - (1/\rho) \partial \rho \!\!\!/ \partial x + \partial \!\!\!/ \partial x (A_H \partial u \!\!\!/ \partial x) + \\ \partial \!\!\!/ \partial y (A_H \partial u \!\!\!/ \partial y) + \partial \!\!\!/ \partial z (A_V \partial u \!\!\!/ \partial z) \end{array}
```

y:
$$\partial v/\partial t + u \partial v/\partial x + v \partial v/\partial y + w \partial v/\partial z + \mathbf{fu} = -(1/\rho)\partial \mathbf{p}/\partial y + \partial/\partial x(\mathbf{A}_H\partial v/\partial x) + \partial/\partial y(\mathbf{A}_H\partial v/\partial y) + \partial/\partial z(\mathbf{A}_V\partial v/\partial z)$$

El balance queda como:

$$-f v = \frac{\partial}{\partial z} \left(A_V \frac{\partial u}{\partial z} \right)$$

$$f u = \frac{\partial}{\partial z} \left(A_V \frac{\partial v}{\partial z} \right)$$

$$f v + A_V \frac{\partial^2 u}{\partial z^2} = 0$$

$$-fu + A_V \frac{\partial^2 v}{\partial z^2} = 0$$

Cuya solución es:

$$u = V_0 e^{az} \cos\left(\frac{\pi}{4} + az\right)$$

$$v = V_0 e^{az} \operatorname{sen} \left(\frac{\pi}{4} + az \right)$$

$$V_0 = \frac{\tau}{\sqrt{\rho^2 f A_V}} \qquad a = \sqrt{\frac{f}{2A_V}}$$

En z=0 (superficie)

$$u(0) = V_0 \cos\left(\frac{\pi}{4}\right)$$

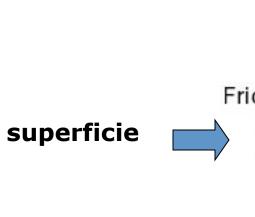
$$v(0) = V_0 \operatorname{sen}\left(\frac{\pi}{4}\right)$$

Esto es, la corriente superficial está orientada 45° a la derecha del viento en el HN.

Debajo de la superficie:

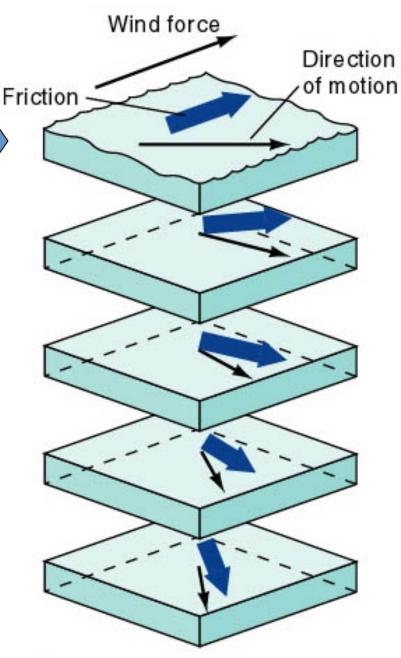
$$\left[u^2 + v^2\right]^{\frac{1}{2}} = V_0 \mathbf{e}^{az}$$

La velocidad decae exponencialmente con la profundidad.

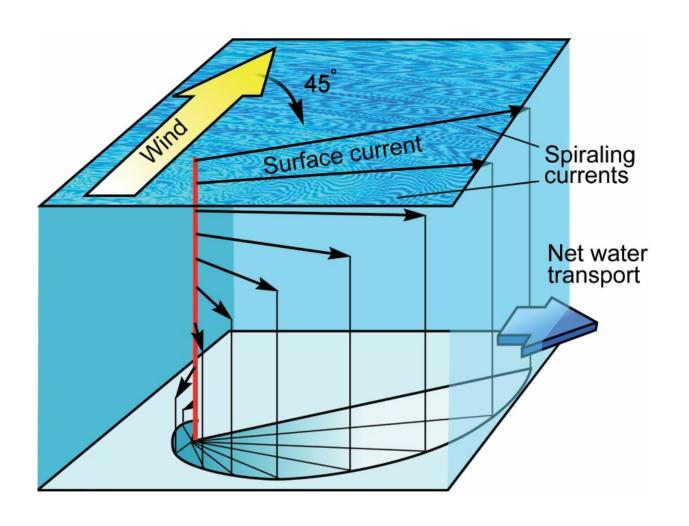


¿Cómo se propaga la fuerza del viento hacia el océano?

balance entre fricción y rotación



Espiral de Ekman



Profundidad de Ekman

La profundidad hasta la que actúa el viento ocurre en

$$D_E = \sqrt{\frac{2\pi^2 A_V}{f}} \approx \frac{3.8 W_{10}}{\sqrt{sen \varphi}}$$

Espiral de Ekman

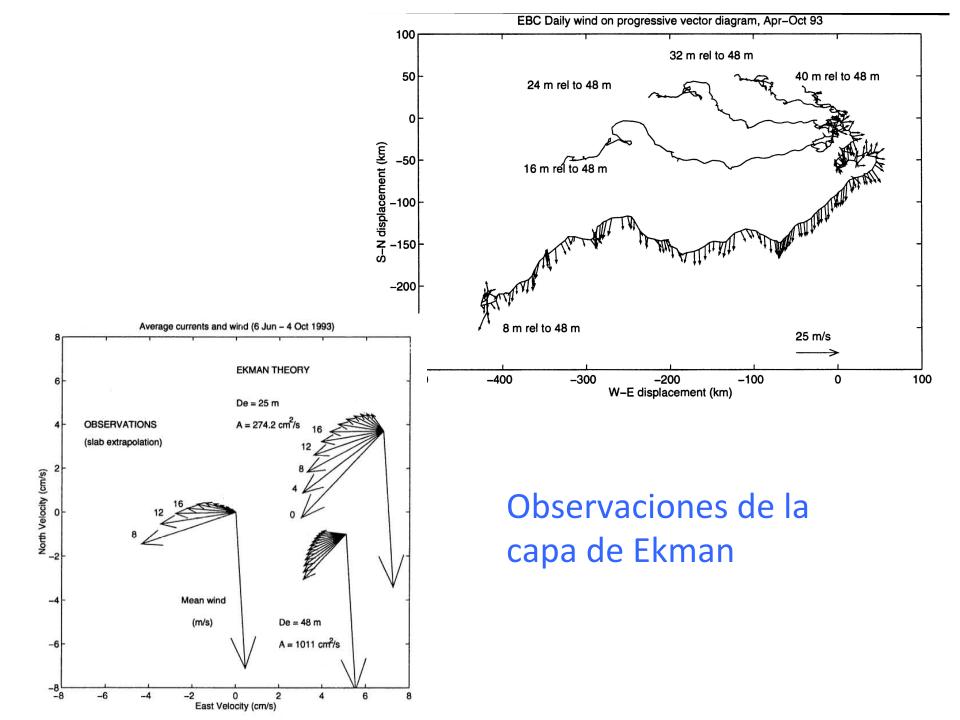


El transporte neto en la capa de Ekman ocurre 90° a la derecha del viento

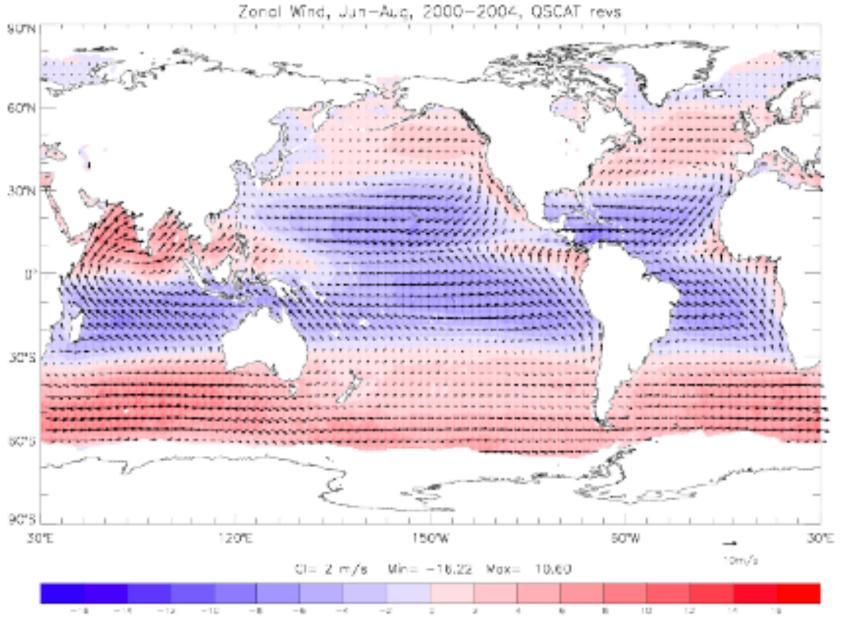
$$U_{EK} = \frac{\tau}{\rho f} \qquad \text{(m² s-1)}$$

Técnicamente, no es un transporte (m³ s⁻¹). Se debe sumar horizontalmente a lo largo de una sección para obtener las unidades

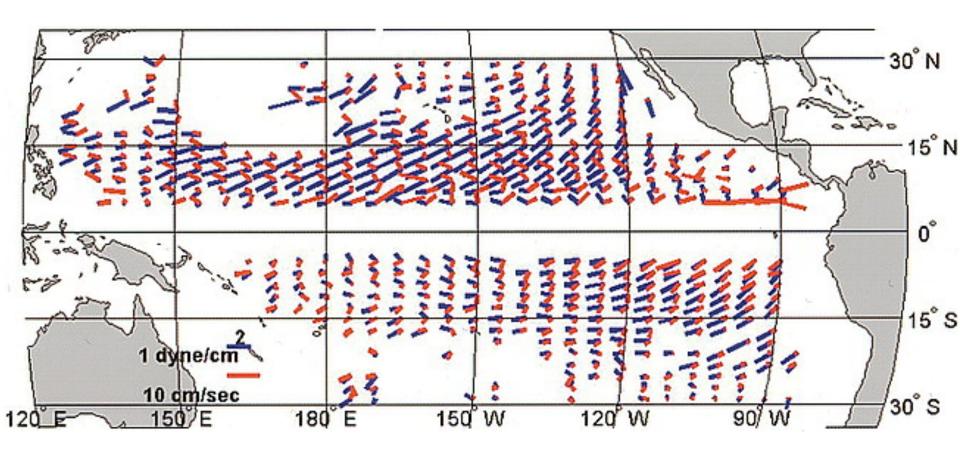
Si $\tau \sim 0.1$ N m⁻², U_{EK}=1 m² s⁻¹. Si se integra sobre una distancia de 5000 km, el transporte total es 5 x 10^6 m³ s⁻¹, o sea, 5 Sv.



Viento sobre la superficie



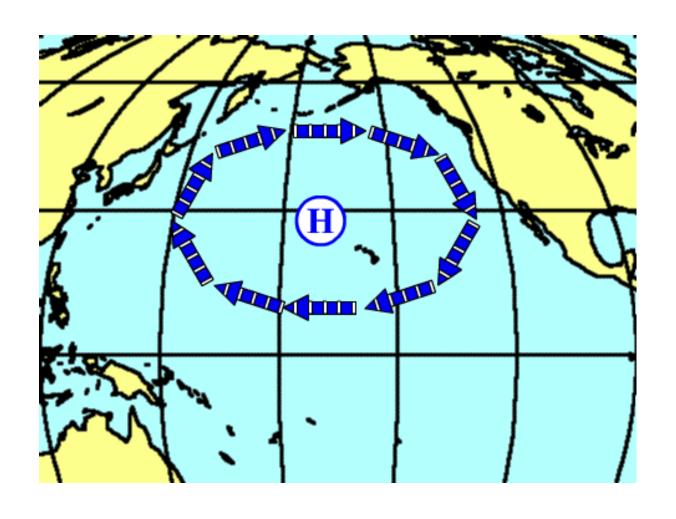
Balance de Ekman global en base a boyas de deriva

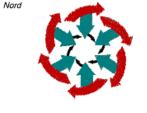


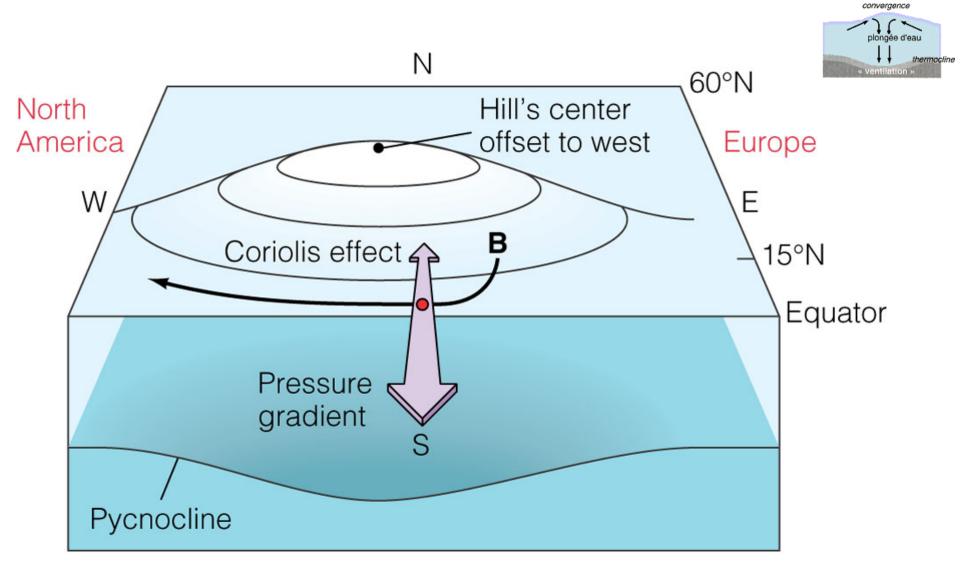
Azul – Viento promedio

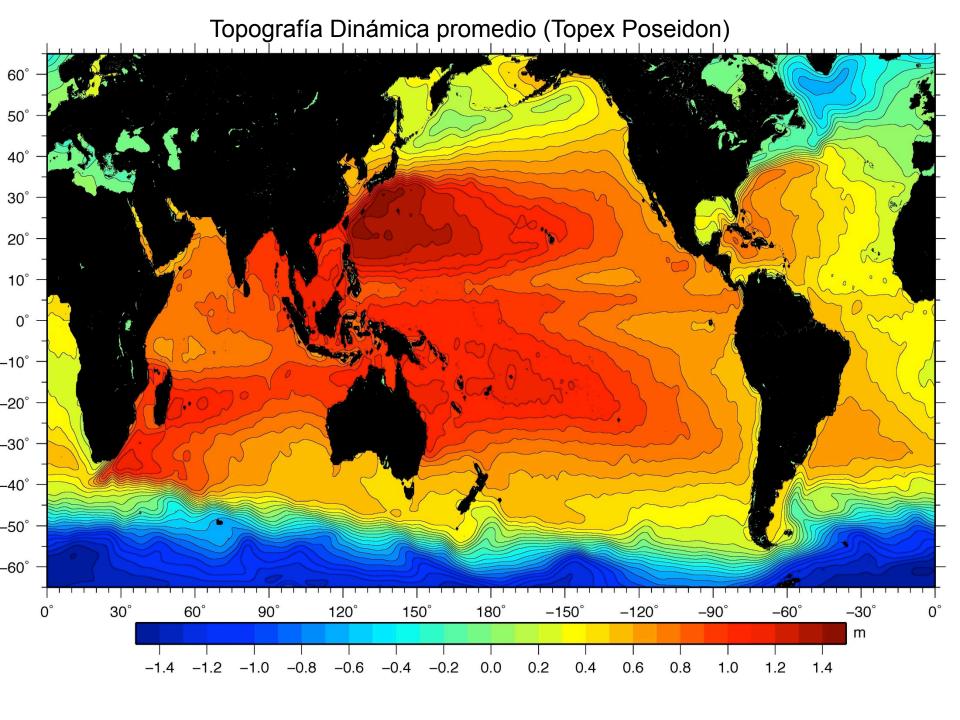
Rojo - Corriente promedio 0-15 m

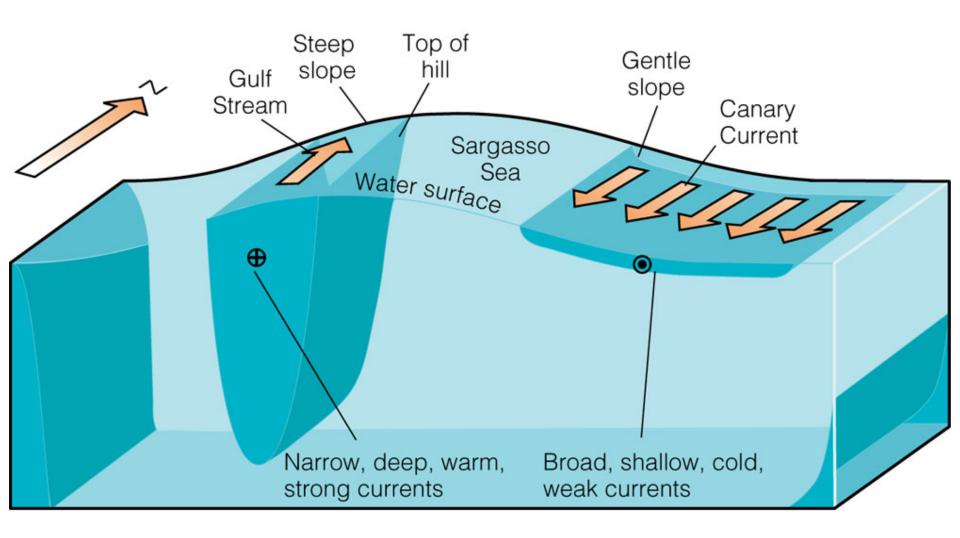
Patrón de vientos y el Transporte de Ekman





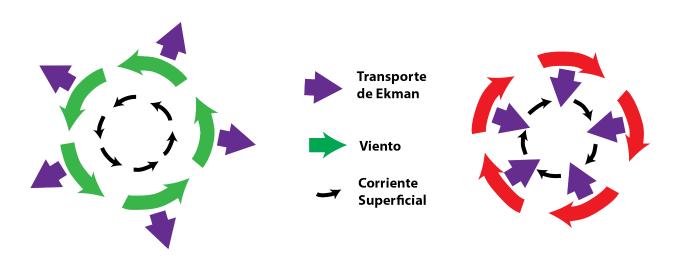


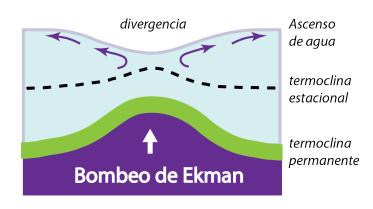


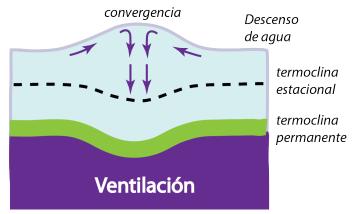


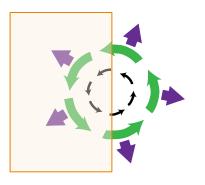
Viento y Bombeo de Ekman

(hemisferio norte)

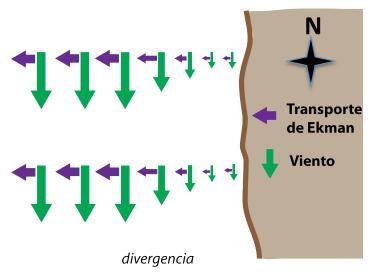


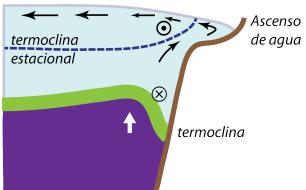




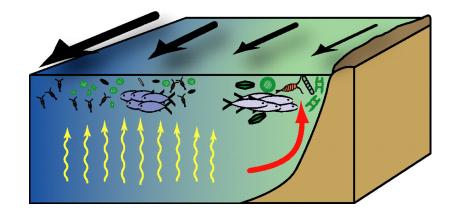


Surgencia por el Rotacional del Esfuerzo (divergencia) del Viento



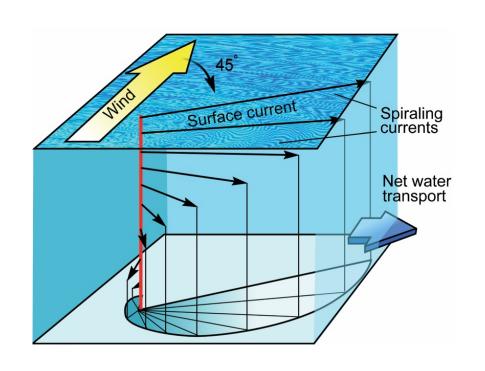


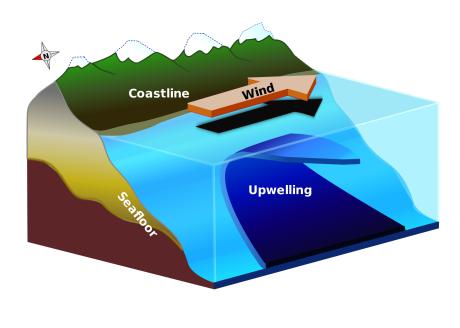
- El rotacional positivo levanta la termoclina estacional
- Los nutrientes debajo de la termoclina se desplazan hacia la zona fótica



Espiral de Ekman

Surgencia Costera





- En promedio, el agua se mueve 90° a la derecha del viento en la capa superficial (capa de Ekman).
- Para que exista surgencia costera en el HN, el viento debe ser paralelo a la costa, con la costa a la izquierda
- Las aguas costeras son más frías y ricas en nutrientes

Corrientes de Frontera Oriental

